

P6.5-7) A flywheel rotates freely on a shaft located at its center (point *O*). The flywheel has a mass moment of inertia about its mass center of $I_o = 0.2 \text{ kg}\text{-m}^2$ and is attached to two masses as shown in the figure. Mass *A* ($m_A = 50$ kg) is attached to the inner radius ($r_i = 10$ cm) of the flywheel though an inextensible rope. Mass *B* ($m_B = 20$ kg) slides along a rough horizontal surface ($\mu_k = 0.3$) and is attached to the flywheel's outer radius ($r_o = 20$ cm) through an inextensible rope. If the flywheel is released from rest, calculate the wheel's angular velocity after mass *B* has moved 10 cm.

<u>Given:</u>

Find:

Solution:

Write down the equation of motion for each body as a function of the given parameters, rope tensions, and the accelerations.

A:

B:

Flywheel:

Relate the angular acceleration to the linear accelerations.

 $a_A = ___ \alpha$

 $a_B = _ \alpha$

Determine the angular acceleration of the flywheel.

Use the 3 equations of motion and the acceleration relationships.

Use kinematic relationships to determine the angular velocity of the flywheel after B has moved 10 cm.

Calculate the change in angular position of the flywheel.

Δθ = _____

ω =

Calculate the angular speed.